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In hole-doped LaMnO3, i.e., La is partially substituted by Ca or Sr, the manganese ions are in a mixed-valent
state of two magnetic configurations, Mn4+ �spin 3 /2� and Mn3+ �S=2�, while in electron-doped LaMnO3,
where La is partially replaced by Ce, the two mixed-valent configurations are Mn3+ and Mn2+ �S*=5 /2,
half-filled shell�. The Mn3+ configuration can be considered an eg hole in the half-filled shell. The eg holes are
allowed to hop between the Mn sites with hopping amplitude t, but the multiple occupancy of the eg levels is
excluded at each site by a large Coulomb energy. This hopping of the eg holes gives rise to the ferromagnetic
double-exchange mechanism, which competes with the antiferromagnetic superexchange J between the local-
ized spins S. By using a mean-field slave-boson formulation, we calculate the ground state energy of the
system for the localized spins oriented in the magnetic configurations of the A, B, C, and G phases of
La1−yCeyMnO3 as a function of y and one model parameter, J / t. Although the models are quite different, the
phase diagram for electron doping is similar to that for hole doping. The effect of canting of the spins on the
band structure of the itinerant eg electrons and the stability of the A and B phases toward canting are discussed.
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I. INTRODUCTION

The rich phase diagram of La1−xRxMnO3, where R is a
divalent or tetravalent ion �e.g., Ca, Sr, or Ce�, is a conse-
quence of the interplay of charge, spin, orbital, and lattice
degrees of freedom.1–3 The partial substitution of trivalent La
by divalent Ca or Sr corresponds to hole doping of LaMnO3,
while replacing La by tetravalent Ce gives rise to electron
doping.4 The range of these substitutions is limited by the
tolerance factor �ratio of the distance between the cation and
O ions and the MnO bond length divided by �2, i.e.,
dR-O / ��2dMn-O��. Only for La1−xCaxMnO3 �LCMO� the tol-
erance factor is close to 1 and the alloy can form over the
entire concentration range, 0�x�1.5,6 The end compounds
of LCMO, LaMnO3 and CaMnO3, are antiferromagnetic in-
sulators, while for intermediate x, the system is either a fer-
romagnetic metal or a charge-ordered antiferromagnet and
may display phase separation.7,8 The Jahn–Teller coupling to
the lattice9–11 changes the Mn-O-Mn bond lengths and
angles12 and gives rise to orbital order.13 Electron-doped
manganites �Ce-doping� have been less studied and are lim-
ited to less than 50% substitution by the tolerance factor.

In La1−xRxMnO3, the Mn ions form a nearly simple cubic
lattice with one oxygen ion located approximately on the
center of each side and the La or R atoms at the body center
of the cube. The O2− ions mediate the binding between the
Mn ions, while the role of La and R doping is to provide
conduction electrons.14 In cubic or nearly cubic symmetry,
the five 3d levels are split into a t2g triplet and an eg doublet.
With octahedral coordination, the t2g states have lower en-
ergy than the eg orbitals. For hole-doped systems, the Mn
ions are in a mixed trivalent �3d4� and tetravalent �3d3� state,
so that the three t2g orbitals are all singly occupied with their
spins coupled to form a total spin 3 /2. The eg orbitals, on the
other hand, are empty for Mn4+ and occupied by one 3d
electron in Mn3+, ferromagnetically correlated with the t2g
electrons via the Hund’s rule. The intermediate valence char-
acter of the Mn ions arises from the hopping of the eg elec-

trons. For electron doping, on the other hand, the Mn ions
are in a mixed divalent �3d5� and trivalent �3d4� state. For
Mn2+, each of the five orbitals is singly occupied and all
spins are ferromagnetically correlated to a total spin S*

=5 /2. The trivalent ion has an eg electron missing, so that
the mixed valence character is induced by the itinerant eg
hole. The hole can be in either of the two eg orbitals, but its
spin is locally correlated with the spin of the localized elec-
trons.

In a previous publication,15 we studied hole-doped man-
ganites as a cubic lattice of mixed-valent Mn ions with the
t2g spins �treated classically� oriented in the spin arrange-
ments of the A, B, C, and G phases of the manganites.5 The
multiple occupancy of the eg levels at each site is prevented
by a large Coulomb interaction, which is taken into account
with auxiliary bosons in the mean-field approximation. The
eg electrons are allowed to hop between nearest neighbor
sites with amplitude t, which gives rise to the ferromagnetic
double exchange.16,17 We obtained the band structure for the
eg electrons and the ground state energy for each of the
phases. For a given doping x, the phase diagram then only
depends on one parameter, namely, J / t. Our calculation re-
produces the sequence of phases of LCMO as a function of x
for J / t of the order of a few percent.

These results have been extended to include the Jahn–
Teller coupling to the lattice.18 A Jahn–Teller distortion lifts
the degeneracy of the eg levels and changes the band struc-
ture. Due to their anisotropic spin configurations, the A and
C phases have an energy gain due to lattice distortions and,
consequently, the region of stability of these phases grows at
the expense of the B and G phases. The Jahn–Teller distor-
tion consists of a compression �expansion� of the c axis for
the A phase �C phase�,18 which is in agreement with
experiments.5,19 Further extensions of this calculation in-
volve instabilities toward the canting of spins and long-range
orbital order in the A phase.20–22

In this paper, we study the case of electron doping, i.e.,
La1−yCeyMnO3. Our hole-doping model is limited to one eg
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electron per site by the excluded multiple occupancy of ev-
ery site. To overcome this restriction, it is necessary to allow
the double occupancy of the Mn sites. Within the framework
of slave bosons, this can be accomplished by enhancing the
space of slave bosons similar to that of the Kotliar–
Ruckenstein formalism23,24 for the Hubbard model. This re-
quires four bosons �two eg orbitals times spin� for the Mn3+

configuration and six slave bosons for the Mn2+ configura-
tion subject to Hund’s rules. In mean field, the energy would
have to be minimized with respect to all the parameters. A
more practicable approach is to assume that eg holes �at most
one per site� are moving in the background of a Mn2+ lattice
�half-filled 3d shells with spin S*=5 /2�. Then only one slave
boson �representing the charge of the eg holes� is needed25

and the approach has similarities with the hole-doped case.
Both models, hole doping and electron doping, are physi-
cally quite different and have LaMnO3 as the only common
point. Since LaMnO3 is an orbitally ordered insulator, there
are difficulties in matching both models at that point. The
present model is then not just an extension of the hole-
doping model to a different range of parameters. The phase
diagram for the electron- and hole-doping cases are very
similar, which is in agreement with the experimental situa-
tion. This is different from the cuprates, where electron and
hole doping lead to quite different results.

The rest of the paper is organized as follows. In Sec. II,
the model for quasicubic electron-doped manganites is intro-
duced. In Sec. III, we obtain the band structure for the eg
holes in the dominating B phase and the ground state phase
diagram for electron doping. In Sec. IV, we analyze the con-
sequences of the canting of the spins in the A and B phases.
A discussion of the different classes of models for mangan-
ites is presented in Sec. V. Concluding remarks follow in
Sec. VI.

II. MODEL

The Hamiltonian for electron-doped manganites can be
written as H=Ht+Hm, where Ht represents the hopping of
the eg holes between the Mn2+ �half-filled shell� sites on a
simple cubic lattice, and Hm is the magnetic energy arising
from the superexchange between the localized spins S.

The nearest neighbor hopping Hamiltonian for the eg
holes is given by

Ht = � �
jMm

�jSMm�	jSMm�

− t �
	jl�mjml�MjMlMj

*M
l
*

SMj,

1

2
��S

1

2
S*M

j
*�

�
SMl,
1

2
��S

1

2
S*M

l
*���jSMjmj�	jS*M

j
*�M̂mjml

�R jl�

��lS*M
l
*�	lSMlml� + H.c.
 . �1�

Here, the bra and ket denote the states of the Mn ions at the
sites labeled by j and l forming a simple cubic lattice, and
	jl� denotes nearest neighbor sites. The states of the Mn2+

configuration are represented by a spin S*=5 /2 �half-filled

3d shell� and z projection M*, while the states of the Mn3+

configuration by a spin S=2 and spin projection M. The lo-
calized 3d electrons are then all ferromagnetically correlated
�Hund’s rules�. The Clebsch–Gordan coefficients select the
spin components and are needed to preserve the spin rota-
tional invariance. The index m=x2−y2, z2 labels the eg orbit-
als. The Mn3+ states have a label m to indicate which of the
eg states is empty �3d hole�. The completeness condition for
the states requires that at every site

�
Mm

�jSMm�	jSMm� + �
M*

�jS*M*�	jS*M*� = 1, �2�

which excludes the multiple occupancy of the eg holes, i.e.,
the shell can only be half-filled �no hole� or have at most one
eg hole. This corresponds to an implicit infinite Coulomb
repulsion.

The first term in Eq. �1� determines the Fermi energy or
chemical potential � for the itinerant holes, while the second
term corresponds to the nearest neighbor intersite hopping.
The sum is over all the nearest neighbor pairs and � is the
spin component of the itinerant eg hole. The hopping matrix

M̂mjml
�R jl� depends on the direction of R jl, which can be

along the x, y, or z directions. The corresponding matrices
are

M̂x =
1

4
�2Î + �̂z + �3�̂x� ,

M̂y =
1

4
�2Î + �̂z − �3�̂x� ,

M̂z =
1

2
�Î − �̂z� , �3�

where Î and �̂i are the identity and Pauli matrices for the
orbital pseudospin of components �x2−y2 ,z2�. These hopping
matrices are determined by the overlap of the asymptotic of
the eg wave functions. The fact that x2−y2 and z2 orbitals on
neighboring sites have, in general, nonzero overlap implies
that m is not a good quantum number.

We introduce slave-boson creation and annihilation
operators,25,26 bjM*

† and bjM*, which act as projectors onto the
states of the Mn2+ configuration with spin component M* at
site j, and fermion operators for the Mn3+ states at the site j,
with djMm

† and djMm representing the eg holes. The complete-
ness relation equivalent to the condition �2� is now25,26

�
M*

bjM*
† bjM* + �

Mm

djMm
† djMm = 1. �4�

Transitions between configurations are described by the op-
erators �jS*M*�	jSMm�=bjM*

† djMm. The hopping Hamil-
tonian can now be rewritten in auxiliary space, subject to the
constraint �4�, which is incorporated via a Lagrange multi-
plier �. The Hamiltonian in auxiliary space is completely
equivalent to Eq. �1�.

The magnetic interactions between neighboring localized
Mn moments is of the antiferromagnetic superexchange type
mediated by the O ions. The magnetic energy Hm depends on
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the spin configuration of each phase. We consider four dif-
ferent spin arrangements corresponding to the phases A, B,
C, and G.5 The broken symmetry makes it more meaningful
to incorporate the superexchange as Hm=−�JS2N, where
�A=−1, �B=−3, �C= +1, and �G= +3, rather than as a spin-
spin interaction of the Heisenberg type. Here, N is the num-
ber of Mn sites. The coupling strength J can be estimated
from the transition temperature of the end compound
LaMnO3 and should be of the order of 100 times smaller
than the hopping t.

The spin projections Mj = �S of the localized moments
are then determined by the magnetic phase of the system.
The spin component � of the itinerant eg holes is now a good
quantum number. The spin projection of the Mn2+ configu-
ration is M

j
*= �S+�. Only two cases have to be

considered:27 �i� If � and Mj are parallel, the Clebsch–
Gordan coefficient is equal to 1, while �ii� if they are anti-
parallel, the coefficient is 1 /�2S+1. We denote these coeffi-
cients aj�.

As for hole doping in Ref. 15, we study the present model
for electron doping in the mean-field approximation. The bo-
son operators are replaced by their expectation values,26 i.e.,
	bjM*�= 	bjM*

† �=b for M*=S or M*=−S, depending on the
magnetic configuration, and all others are zero. We can re-
write the fermion operators as dj�m

† and dj�m and the mean-
field Hamiltonian is

Hmf = �� − ���
j�m

dj�m
† dj�m + N��1 − b2�

+ tb2 �
	jl��mjml

aj�al��dj�mj

† M̂mjml
�R jl�dl�ml

+ H.c.


− �JS2N . �5�

By Fourier transforming Hmf, we obtain the band structure
for the eg holes, which, of course, depends on the magnetic
phase. In all four phases, there are four bands with generally
different dispersions, which arise from the two eg orbitals
and the two sites per unit cell. In the case of the B phase,
they arise from the two eg levels and the spin. Although the
four phases have different magnetic unit cells, we adopt the
simple cubic Brillouin zone to facilitate a direct comparison
between all phases.

The ground state expectation value of Hmf is to be mini-
mized with respect to b and �, yielding

b2 = y = 1 −
1

N
�
k�

�1 − f�� − � + E�
t �k��
 , �6�

� = −
1

Nb2�
k�

E�
t �k��1 − f�� − � + E�

t �k��
 , �7�

where E�
t �k�, �=1, . . . ,4, are the band energies, f is the

Fermi function, and the sum is over the simple cubic Bril-
louin zone. The spin degeneracy is already incorporated in
the sums. Here, 1−y is the fraction of eg holes in the half-
filled f shell. The ground state energy per Mn ion is given by

EGS/N = ��y + ��1 − y� − 4J�� . �8�

At a first glance, the Hamiltonian �1� for electron-doped
manganites resembles the one for hole doping,15 i.e., for
LCMO. There are, however, some dramatic differences. �1�
In the present case, the hole states are filled from the top of
the bands, while the electron states in Ref. 15 are filled from
the bottom of the bands. �2� In both cases, the compound
LaMnO3 corresponds then to quarter-filling. This is the only
overlap point of the two models. However, due to the orbital
long-range order in LaMnO3, there are additional band split-
tings and the compound is actually an insulator. �3� It is
possible to stress the analogies and differences between the
two models further, by defining the following particle-hole
transformation:

dj�m
† → ei	�njx+njy+njz�cj�m,

dj�m → cj�m
† e−i	�njx+njy+njz�, �9�

where njx is the projection of the Mn position vector R j onto
the x axis in units of the lattice constant a. This transforma-
tion converts hole states into particle states. In view of the
implicit infinite Coulomb repulsion, the particle states, how-
ever, do not correspond to electrons. In terms of the c opera-
tors, the hopping Hamiltonian has now the same form as the
one for hole doping.15 �4� After this transformation, the two
models are still not the same, because the completeness con-
dition also changes and the constraint is no longer the same.
�5� The fact that we cannot exactly map the two models onto
each other is a direct consequence of the large Coulomb
repulsion.

In summary, the present model is not the continuation of
that of Ref. 15 to a different parameter range, but a different
model. The two models, however, have similarities, so that
the results are also expected to be related.

III. BAND STRUCTURE AND PHASE DIAGRAM

Due to the magnetic order of the A and C phases, the x, y,
and z directions in the cubic Brillouin zone are generally not
equivalent. The band structure shown below is along the fol-
lowing directions: From 
 �body center of the cube� to X
�center of the face� along k= �kx ,0 ,0�, then from X to M
�middle of a side� varying ky from 0 to 	 along �	 ,ky ,0�,
from M to R �corner of the cube� along �	 ,	 ,kz�, from R to

 along �k /�3��1,1 ,1�, and from 
 to M along
�k /�2��1,1 ,0�. Finally, X to R refers to the line
�	 ,k /�2,k /�2�.

In the A phase, the localized spins are ferromagnetically
oriented in x-y planes and these planes are antiferromagneti-
cally correlated along the z direction. In the B phase, all
localized spins are ferromagnetically correlated, while the C
phase consists of ferromagnetic chains along the z direction,
which are antiferromagnetically correlated to each other in
the x-y plane. In the G phase, each up spin is surrounded by
neighbors with down spins and vice versa.

The band structure of the eg holes in the B phase is shown
in Fig. 1. Since this phase is ferromagnetic, the unit cell
contains only one Mn ion. Due to the aj� coefficients, the
band for eg holes with spin parallel to the localized spins is
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�2S+1�=5 times more dispersive than the one for antiparal-
lel eg spins. This gives rise to the ferromagnetic double-
exchange mechanism. The four bands arise from the two eg
orbitals of each Mn ion and the two spin components. Ac-
cording to Eqs. �6� and �7�, the eg holes are filled from the
top of the bands, so that the bands are completely filled �y
=1� for CeMnO3, and there is one eg hole per Mn ion for
LaMnO3 �y=0�. These states have a spin polarization paral-
lel to that of the localized spins, so that the total magnetiza-
tion per Mn ion increases with increasing y. This is opposite
to what happens with Ca �Sr� doping. The magnetization has
then a localized and an itinerant component. Note that in the
ferromagnetic B phase the hopping is isotropic.

The band structure of the eg holes in the A phase is shown
by the solid curves in Fig. 2. Since the localized spins in the
x-y planes are ferromagnetically correlated, the motion of the
eg holes is predominantly in these planes. The magnetic unit
cell consists of two sites, one with localized up-spin and one
with localized down-spin. Both spin directions of the eg
holes give rise to the same band dispersion. The four bands
arise from the two Mn ions per unit cell and the two eg

orbitals. The total bandwidth is 6ty. Again, the eg holes are
filled from the top of the bands. The dashed curves refer to
the localized moments canted by 	 /3 in the x-y plane and
are discussed in Sec. IV.

The phase diagram is obtained by comparing the ground
state energies of the four phases for a given y. First, the
hard-core parameter �−� is determined by solving Eq. �6�.
Then the value of � is obtained from Eq. �7� and, finally, the
ground state energy is determined for each phase. For a
given y, EGS, when normalized to the hopping t, is a function
of only one dimensionless model parameter, namely, J / t.

Several energy crossovers are obtained for a fixed y as a
function of the superexchange coupling J. The boundaries of
the phases of lowest energy are shown in Fig. 3. For suffi-
ciently large J, the G phase is always the ground state, since
it has all antiferromagnetic bonds and, hence, the lowest
magnetic energy. The ferromagnetic B phase is favored at
most values of y for small J. The ferromagnetism is rapidly
quenched by the antiferromagnetic superexchange J. The A
and C phases are intermediate phases between the ferromag-
netic B phase and the totally antiferromagnetic G phase.

The band structure for the electron-doped manganites is
very similar �but not identical� to the one of the hole-doped
manganites. This analogy, however, is only superficial, be-
cause the models for the two cases are rather different. The
key difference is that for hole doping, the two configurations
of Mn are the trivalent and tetravalent ones, while for elec-
tron doping, Mn is intermediate valent between divalence
and trivalence. Hence, in the hole-doped situation, the bands
are populated with electrons starting from the bottom of the
bands �the 
 point�, while in the electron-doped case, the
bands are populated with holes from the top of the bands.
Although the band structure is not invariant under a change
of sign of t, the total energy only depends on �t� but not on its
sign.

At a first glance, the phase diagram shown in Fig. 3 for
electron doping is a mirror image of Fig. 5�a� in Ref. 15
corresponding to hole doping. A more detailed comparison,
however, reveals that there are differences arising from the
fact that the localized spins of the higher-valent electronic
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E
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B

FIG. 1. Band structure for the ferromagnetic B phase within the
simple cubic Brillouin zone, with the energy normalized to ty. The
dispersion for the holes with polarization opposite to the magneti-
zation is five times smaller than that parallel to the localized
moments.
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FIG. 2. Band structure for the magnetic A phase within the
simple cubic Brillouin zone with the energy normalized to ty. The
four bands arise from the two sites within the magnetic unit cell and
two eg orbitals per Mn. The solid lines correspond to the bands for
the magnetic configuration of the A phase, and the dashed curves to
a canting of the spins by 	 /3 in the x-y plane.
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FIG. 3. Phase diagram for electron doping obtained by compar-
ing the ground state energies of the four phases A, B, C, and G as a
function of J / t and y.
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configuration are different, i.e., S=3 /2 and S=2, respec-
tively. This affects the magnetic energy as well as the
Clebsch–Gordan coefficient for carrier spin opposite to the
localized one, a=1 /�2S+1.

In the limit x→0 and y→0, both models lead to the lim-
iting case LaMnO3. In both cases, the bandwidth becomes
very small as a consequence of the excluded multiple occu-
pancy of the sites. In this limit, the A and B phases compete
and the energy is determined by the hard-core potential
�Lagrange multiplier ��. This parameter is not the same on
both sides of the phase diagram �electron and hole doping�,
because the spins are different, e.g., in the A phase, the mo-
tion of eg holes is “more two-dimensional” than that of eg
electrons.

IV. CANTING OF LOCALIZED SPINS

The magnetic energy Hm and the effective hopping are
modified when the localized spins are not perfectly parallel
or antiparallel to each other. Let us denote the canting angles
at site j with � j and � j. The hopping between neighboring
sites j and l is then given by28,29

t → t�cos�� j/2�cos��l/2� + sin�� j/2�sin��l/2�exp�− i�� j

− �l��
 . �10�

If we exclude spin-spiral states and Berry phases, this ex-
pression can be simplified by choosing � j =�l, so that the
effective hopping is t cos��� j −�l� /2�. In addition, if canting
gives rise to two sublattices, we may write � j =−�l=� jl /2 and
have t cos�� jl /2� for the canting of the localized spin at that
bond.30 We assume that the � jl are small and, for simplicity,
we distinguish between �z �along the z axis� and �xy within
the x-y plane.31

Since the canting affects the hopping of the eg holes, also
the band structure is changed. This is shown for the A phase
with �xy =	 /3 and �z=0 by the dashed curves in Fig. 3.
Since the hopping matrix element is effectively reduced by
the canting, the overall bandwidth has decreased.

In terms of the canting angles, the coefficient � of the
magnetic energy Hm for the A, B, C, and G phases is given
by20,31 �A=−2 cos��xy�+cos��z�, �B=−2 cos��xy�−cos��z�,
�C=2 cos��xy�−cos��z�, and �G=2 cos��xy�+cos��z�.

The total energy now has to be minimized as well with
respect to �xy and �z. Consider first the magnetic energy. If
the bond is antiferromagnetic, the contribution to Hm is mini-
mum if � is zero. On the other hand, if the bond is ferromag-
netic, magnetic energy is gained by canting the localized
spins. The energy gain is proportional to 1−cos�� /2�2. The
canting of the spins almost always increases the hopping
energy, Et, with a linear dependence on cos�� /2� for small
angles. Hence, minimizing the total energy for given y in a
given phase yields


 = � �Et/N
� cos��/2�

�
�=0

= � 4dJS2 cos
�

2
� , �11�

where the plus �minus� sign corresponds to the ferromagnetic
�antiferromagnetic� bond, and d=1 for �z and d=2 for �xy.

20

The y dependence of the derivative of the hopping energy
with respect to cos�� /2�, 
xy and 
z, is displayed in Fig. 4

for the A phase. 
z is a positive quantity for all y except for
rather large y, where the A phase is no longer stable �see Fig.
3�. Hence, the minimum of the energy corresponds to �z=0,
since the bonds along the z axis are antiferromagnetic. Cant-
ing within the x-y plane is achieved if Eq. �11� is satisfied for
�xy. This is only the case for relatively large values of the
superexchange J. These results are similar to those obtained
for the A phase of hole-doped manganites.

In Fig. 5, we present the results corresponding to the B
phase. All bonds are ferromagnetic now and one expects that

xy �2
z. Again, canting in the B phase can only be realized
for rather large values of J. The G phase, on the other hand,
is isotropic with all bonds being antiferromagnetic, so that no
instability toward canting is obtained.

When two phases, e.g., the A and B phases, have about
the same energy, i.e., close to the phase boundary, there is a
tendency to phase separate.7 Small inhomogeneities in y can
then locally favor one phase over the other. The canting in-
stabilities help the formation of domain walls separating the
phases and are then instrumental for the phase separation to
be implemented.
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FIG. 4. The derivative of the hopping energy �in units of t� in
the A phase with respect to cos�� /2�, as defined in Eq. �11� as a
function of y. The solid line corresponds to canting in the x-y plane,
and the dashed curve to tilting along the z axis.
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FIG. 5. The derivative of the hopping energy �in units of t� in
the B phase with respect to cos�� /2�, as defined in Eq. �11� as a
function of y. The solid line corresponds to canting in the x-y plane,
and the dashed curve to tilting along the z axis.

PHASE DIAGRAM AND SPIN-CANTING EFFECTS IN… PHYSICAL REVIEW B 77, 104446 �2008�

104446-5



V. DISCUSSION

Models for manganites broadly belong into one of two
categories: �1� models with a large on-site Hubbard repulsion
between the eg electrons �or holes� and �2� models that are
based on a strong Jahn–Teller coupling.

A Coulomb interaction of several electron volts is always
present in the 3d shell of transition metal ions. In the present
case, the repulsion prevents the occupation of electronic con-
figurations of Mn other than the divalent and the trivalent.
The characteristic energy of the phonons �e.g., the Debye
temperature� is much weaker and of the order of a few hun-
dreds of eV. It is then expected that the Jahn–Teller energy
for the coupling of the eg electrons �holes� to the lattice does
not exceed a tenth of an eV. In other words, it is much
weaker than the Coulomb energy and also smaller than the
hopping integral t. This effect is sufficient to explain partially
the compression �stretching� of the c axis in the A phase �C
phase� and the orbital long-range order in the A phase. While
the magnitude of the change of the c axis �deviation from a
cube� is much smaller than the measured value �electronic
energies possibly play a role here�, the energy of the orbital
order appears to have the correct order of magnitude. So far,
we have ignored the CE phase, which involves charge order.
Charge order can be driven either by a nearest neighbor Cou-
lomb repulsion or the Jahn–Teller effect induced by the A1g
breathing mode, which alternatingly have to expand and con-
tract the MnO6 octahedra. In the present slave-boson formu-
lation, charge order requires two sets of slave-boson expec-
tation values and two sets of Lagrange multipliers for the
completeness condition.

Models of class �2� require a strong Jahn–Teller coupling,
in addition to a strong Hund’s rule coupling of the spins.2,32

A large distortion of the octahedra leads to a crystalline elec-
tric field splitting of the eg levels, lifting their degenaracy.
Hence, only one eg level can have a significant occupation.
These models are then, to some extent, equivalent to ap-
proaches where the orbital eg degrees of freedom are ne-
glected. The effect of the crystalline field is then similar to
that of a large Coulomb repulsion. This picture is clear for
the A and C phases, where due to the anisotropic spin ar-
rangements the hopping is anisotropic and supports a Jahn–
Teller distortion. However, for the isotropic B and G phases,
a Jahn–Teller distortion does not occur �there is, however,
magnetostriction� and, as a consequence, other Mn electronic
configurations than the two dominant ones �in the present
case, divalent and trivalent� will have a significant popula-
tion. This would violate the generally accepted assumptions
for the valence states of Mn.14 Hence, it makes a difference if
Coulomb interactions or a strong Jahn–Teller effect are con-
sidered. On the other hand, charge and orbital order can be
incorporated quite naturally within the Jahn–Teller formal-
ism.

Phase separation is a prominent feature in manganites.7,8

In strongly correlated models, phase separation appears in
calculations carried out at constant chemical potential. This
is not the case in the present paper, because the chemical
potential is determined for a fixed density of eg carriers.
Phase separation can also occur due to inhomogeneities in
the sample. Phase separation is expected to occur in the

neighborhood of phase boundaries, where two phases have
very comparable energies. Working against phase separation
is the surface energy separating the phases �domain
boundary�.8 Inhomogeneities, as a consequence of doping,
can give rise to local canting of the localized spins, which
facilitates the formation of narrow domain walls separating
the phases.

VI. CONCLUDING REMARKS

We considered a simple cubic lattice of Mn ions in an
intermediate valence state between two magnetic configura-
tions, Mn2+ and Mn3+. The Mn2+ configuration has a half-
filled 3d shell with a total spin S*=5 /2, whereas the Mn3+

configuration has been represented by the half-filled shell
and a hole in one of the eg orbitals with a total spin S=2. The
eg hole is itinerant and can move throughout the lattice with
directed hopping subject to excluded multiple occupation
�large Coulomb potential� and Hund’s rules maximizing the
spin at every site. The localized spins interact with each
other via a nearest neighbor superexchange, which competes
with the double exchange caused by the hopping of the eg
holes. This model contains all the important ingredients to
describe electron-doped manganites.

The hopping of the eg holes depends on the orbital �x2

−y2 or z2� and on the magnetic order of the localized spins of
the phase under consideration. The excluded multiple occu-
pation of the eg holes at each site is taken into account via
slave bosons in the saddle point approximation. The phase
diagram for electron-doped manganites is obtained by com-
paring the energies of the A, B, C, and G phases for each y
and J / t. Here, we exclude the CE phase, which in addition to
spin order also has charge order and requires a larger unit
cell. The phase diagram as a function of y is approximately
the mirror image of the phase diagram for hole-doped man-
ganites as a function of x. The former qualitatively agrees
with the observed phases in La1−yCeyMnO3 and the latter
reproduces the experimental sequence of phases in
La1−xCaxMnO3.15

For electron-doped manganites, i.e., the substitution of
trivalent La in LaMnO3 by tetravalent Ce is limited by the
tolerance factor to doping concentrations y less than 0.5. In
this region of the phase diagram, the ferromagnetic B phase
dominates.4,33 Note that the strength of the superexchange is
not the same for electron doping and hole doping. Although
the localized spin is larger for electron doping, the coupling
constant is weaker, because the energy required for the vir-
tual electron transfer process to the O ion leading to the
superexchange is larger. Hence, the A phase can only play a
role for very small y. For y→0, the A phase is insulating, as
a consequence of the long-range orbital order �not considered
here�. For small y, one band is then almost empty and disor-
der leads to localization of the eg electrons, such that we are
actually in the presence of a ferromagnetic insulator, as ex-
perimentally observed for Ce doping.33

In this paper, we also investigated a possible canting of
the localized moments. We limited ourselves to the relevant
regime, i.e., the A and B phases for y�0.5. Canting between
localized spins is likely along directions with ferromagnetic
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bonds. For electron doping, canting is possible within the x-y
planes in the A phase, however, only for relatively large val-
ues of J / t. The B phase, where all localized spins are ferro-
magnetically coupled, is unstable to canting, but again only
for unphysically large values of J / t.

A tetravalent cation may change the local environment,
i.e., by distorting the MnO6 octahedra in the neighborhood
�Jahn–Teller effect�. This lifts the degeneracy of the eg hole
levels. The band structure is then spread over a larger energy
interval, and changes in the hopping amplitude through
cos��xy /2� and cos��z /2� will affect 	Ht� less than in the
degenerate case. Consequently, 
xy and 
z are locally smaller

than those calculated, and more modest values of J / t will
lead to local canting.30 Two phases that are energetically
nearly degenerate �close to the phase boundary� may phase
separate. The canting instabilities of local moments can then
lead to the formation of domain walls �separating the phases�
and, hence open the door to phase separation.
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